基于傳統色轉換LED器件,色域限制在約90%NTSC以內,顯示效果已經難以進一步地突破。采用量子點等新型發光材料所制成的LED器件,通過色轉換過程可實現紅、藍及綠波段較窄的發射半波寬(<20 nm),色域可以超過120%NTSC,被視為下一代最有潛力的顯示技術之 一。但是,目前量子點LED器件仍缺乏有效封裝設計,在色轉換結構及芯片集成方面仍普遍沿用傳統封裝結構,因此,限制了器件發光效率與穩定性的提升。
based on traditional color conversion LED devices, the color gamut is limited to around 90% NTSC, and the display effect has been difficult to further breakthrough. LED devices made of new luminescent materials such as quantum dots can achieve narrower emission half widths (less than 20 nm) in the red, blue, and green wavelength bands through the color conversion process. The color gamut can exceed 120% NTSC, which is considered one of the most promising next-generation display technologies. However, currently quantum dot LED devices still lack effective packaging design, and the color conversion structure and chip integration are still commonly used in traditional packaging structures, which limits the improvement of device emission efficiency and stability.
2023年7月5日,上海芯元基半導體采用化學剝離GaN技術,通過特殊設計的光學反射層及量子點色轉換技術,實現了高良率、高效純紅光倒裝結構和正裝結構的量子點MiniLED芯片。該項重大技術的突破將有效降低紅光芯片的成本,提高產品的性價比,或將全面提速量子點顯示技術的商業化進程。
The breakthrough in technology by ChipFoundation Semiconductor on July 5, 2023,3, involves the use of chemical lift-off GaN from sapphire technique, along with a specially designed optical reflector and quantum dot color conversion technology. This breakthrough enables the production of high-efficiency, high-purity red light flip-chip quantum dot MiniLED chips and horizontal structure quantum dot MiniLED chips. The significant advancement is expected to effectively reduce the cost of red light chips, improve product cost-effectiveness, and potentially accelerate the commercialization process of quantum dot display technology.
Figure 1: Structural schematic diagram
倒裝結構量子點芯片技術方面,芯元基將剝離后的GaN芯片的出光面,用量子點膠水貼合到已經加工好的特殊光學反射層基板上,該光學反射層,對激發光源的波長具有高反射率,對量子點發光的波段具有非常高的透光率,以此來實現紅光量子點更好激發,實現了紅光量子點厚度小于1微米的情況下,量子點完全激發后,紅光芯片無漏藍光等現象。量子點芯片加工過程中,我們采用標準的半導體制程,結合光罩對準方法,在像素的側壁做有高密度的介質層,實現量子點的完全密封,解決量子點在可靠度方面的顧慮。
In the flip-chip quantum dot chip technology, the chip substrate will lift off. ChipFoundation Semiconductor utilizes quantum dot glue to attach the light-emitting surface of the GaN chip to a pre-fabricated special optical reflection layer substrate. This optical reflector has a high reflectivity for the excitation wavelength of the light source and a very high transmittance for the emission wavelength of the quantum dot, thus achieving efficient excitation of the red light quantum dots. By doing so, the quantum dot thickness can be reduced to less than 1 micrometer while ensuring that the red light chip is fully excited without leakage of blue light or other phenomena. During the processing of the quantum dot chips, a standard semiconductor process is used, combined with mask alignment methods, to create a high-density dielectric layer on the sidewall of the pixel, achieving complete sealing of the quantum dots and addressing concerns about their reliability.
Figure 2: Optical Reflection Layer Design
產品的特性曲線如下:(芯片尺寸:2*4mil/50*100um)
特性曲線:
Forward Voltage Vs Forward current
Forward current Vs Relative Luminous Intensity
Forward current Vs Dominant Wavelength
產品的發光情況及良率如下表:
表一:發光測試情況及良率:
后續,芯元基半導體將以此技術為基礎,進一步開發與量子點色轉換層相關顯示器件技術,以達到未來高分辨率顯示系統的實際需求。基于該量子點技術方案,芯元基半導體正在為國際知名機構開發尺寸小于0.2mm*0.2mm的量子點MIP器件。
In the future, ChipFoundation Semiconductor will further develop display device technologies related to quantum dot color conversion layers based on this technology to meet the practical requirements of high-resolution display systems.based on this quantum dot technology scheme, ChipFoundation Semiconductor is currently developing quantum dot MIP(Micro LED in Package) devices with dimensions smaller than 0.2mm*0.2mm for internationally renowned institutions.
芯元基的量子點MIP技術,在GaN晶圓的每個子像素的側壁均做有金屬電極結構,這種結構除了有利于像素的共陰極設計外,也可以更好的解決獨立子像素間的光串擾問題,在RGB量子點模板上(QDCC),采用特定結構設計的光學反射鏡,實現紅光、綠光的高效激發。所有的制程均采用標準的晶圓加工工藝,不需要巨量轉移工藝,直接將晶圓芯片和QDCC模板鍵合,可更容易降低MIP的產業成本的同時,實現高可靠性的像素單元。
The ChipFoundation's quantum dot MIP technology has a metal electrode structure on the N-GaN sidewall of each sub pixel of the wafer . In the RGB quantum dot color conversion (QDCC) template, an optically reflective mirror with a specific structural design is used to achieve efficient excitation of red and green light. All processes are carried out using standard wafer fabrication techniques, eliminating the need for massive transfer processes. The wafer chip can be directly bonded to the QDCC template, making it easier to reduce the production cost of MIP while achieving high reliability of the pixel unit.
附論壇信息
論壇時間:2023年7月19-20日
論壇地點:上海世博展覽館·NEPCON論壇區
主題:協同創新 產業共贏
指導單位:
主辦單位:
中國國際貿易促進委員會電子信息行業分會
勵展博覽集團、半導體產業網、半導體照明網
承辦單位:
北京麥肯橋新材料生產力促進中心有限公司
會議亮點:
MiniLED市場爆發在即,工藝改進為設備企業帶來新機遇。MiniLED指由尺寸介于50-200μm之間的芯片構成的LED器件。相比芯片尺寸大于200μm的傳統LED,MiniLED在前道制造和后道封裝環節均有工藝改進。
前道制造:MiniLED芯片前道制造通常包括襯底、外延、芯片加工三大環節,其中芯片加工又包括光刻、刻蝕、濺射、蒸鍍、測試分選等工序。針對設備而言:1)由于MiniLED芯片外延環節對波長均勻性和缺陷控制提出新的要求,更高產能和更高良率的MOCVD設備需求有望上升。2)芯片加工完成后,面對更大規模的芯片數量,測試分選設備需要提高產能和效率。
后道封裝:MiniLED后道封裝工藝通常包括固晶、回流焊、測試、返修、封膠、烘烤等流程。針對設備而言:1)Pick&Place和刺晶為目前固晶機的主要方案,高精度、高速度固晶機成為MiniLED的優選。2)MiniLED返修是難點,設備路線標準不一,設備商多方探索。
Mini LED時代,芯片微縮化增加了封裝難度,促成了不同封裝技術的開發,SMD、IMD、COB、COG(Chip On Glass)等路線百花齊放。倒裝COB有望成為Mini LED主流的封裝方式。大會結合NEPCON China 2023展區首創的Mini LED驅動模組SMT產線、背光模組COB工藝產線,針對Mini LED的產品、解決方案、關鍵零組件、制程材料、生產設備(巨量轉移設備)、 AOI檢測設備、驅動IC芯片等展出。并將邀請品牌終端廠、面板廠、背光、模組企業代表,LED芯片廠商蒞臨分享。誠邀產業鏈上中下游企業參會,共同探討Mini/Micro-LED協同技術創新策略、行業趨勢、工藝問題、技術路線、商業化進程等進行討論,加快全球Mini/Micro LED產業化及商業化應用進程!
·現場“沉浸式”了解Mini LED生產線布局和工藝
·NEPCON首創Mini LED驅動模組SMT產線+背光模組COB工藝產線
·前瞻Mini/Micro LED顯示技術及產業趨勢
·研判全球Mini/Micro LED顯示產業市場
·聚焦新一代顯示技術創新及應用進展
·探討關鍵材料、設備及工藝技術瓶頸及產業化
·聚焦Mini/Micro LED產業鏈上下游協同創新
日程安排:
參會/演講/商務咨詢:
張女士(Vivian)
13681329411
zhangww@casmita.com
賈先生(Frank)
18310277858
jiaxl@casmita.com
在線報名: